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Abstract. An objective methodology, that does not require any user-defined1

parameter assumptions, is introduced to obtain an improved soil moisture2

product along with associated uncertainty estimates. This new product is3

obtained by merging model-, thermal infrared remote sensing-, and microwave4

remote sensing-based soil moisture estimates in a least squares framework,5

where uncertainty estimates for each product are obtained using triple col-6

location. The merged product is validated against in-situ based soil mois-7

ture data and showed higher correlations with observations than individual8

input products. The resulting combined soil moisture estimate is an improve-9

ment over currently available soil moisture products due to its reduced un-10

certainty and can be used as a stand alone soil moisture product with avail-11

able uncertainty estimates.12
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1. Introduction

Consistent estimates of soil moisture can be obtained in various ways; for example13

through remote sensing or through modeling of the land-surface water budget. However,14

these estimates are not perfect and each method has characteristic uncertainties. There-15

fore, it is frequently desirable to merge independent realizations to obtain a more accurate16

unified estimate. Theoretically, the more independent data that are merged, the larger17

the reduction in the noise of the merged product. However, it is important to weight the18

products based on their relative accuracies in order to minimize errors.19

Data assimilation using Kalman Filter-based methodologies is one of the most20

commonly-used approaches for merging different products while taking into account the21

relative uncertainties. However, in land data assimilation studies, these methodologies22

often rely on ad-hoc statistical descriptions of errors in assimilated observations, model23

parameters, or model forcings. As a result, the relative weighting applied to modeled and24

observed soil moisture information by a land data assimilation is arguably subjective and25

does not necessarily reflect an optimized integration of independent data sources [Crow26

and Van Loon, 2006; Reichle et al., 2008].27

Kalman Filter theory can be shown to be a recursive solution of the least squares28

problem [Sorenson, 1970] for an appropriate time frame. The solution of Kalman [1960]29

enables propagation of the best estimate and its errors in time, whereas in ordinary least30

squares the solution is assumed constant in time. The ultimate goal for both of these31

solutions can be shown to obtain an estimate that has minimized error variance. However,32
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both solutions require prior knowledge of the uncertainty estimates of the products to33

obtain an optimal analysis.34

Triple collocation is a method that objectively obtains error estimates for three or more35

independent products. This method was originally introduced in oceanic studies by Stof-36

felen [1998] and Caires and Sterl [2003] to estimate near-surface wind speed errors, and37

later applied in many hydrological applications. Scipal et al. [2008] estimated the errors38

in passive microwave-, active microwave-, and model-based soil moisture products. Mi-39

ralles et al. [2010] estimated errors in passive microwave-, station-, and model-based soil40

moisture products and validated the error estimates using watershed scale station-based41

data. Dorigo et al. [2010] evaluated the uncertainties of global passive microwave-, ac-42

tive microwave-, and model-based soil moisture products. Hain et al. [2011] estimated43

errors in passive microwave-, thermal infrared-, and model-based soil moisture realiza-44

tions. Parinussa et al. [2011b] estimated errors in passive microwave-, active microwave-45

, and antecedent precipitation index-based soil moisture products, compared the triple46

collocation-based errors with data assimilation based error estimates [Crow, 2007], and47

found very high correlation between the error estimates of these two techniques.48

Triple collocation was advocated by Crow and van den Berg [2010] as a means to esti-49

mate observation error covariance parameters required by land data assimilation systems.50

However, Crow and van den Berg [2010] were still forced to make a number of subjec-51

tive guesses regarding the statistical attributes of modeling error in their system. In this52

study, we propose an objective methodology that does not require any user-defined er-53

ror parameters as input. In this approach, different soil moisture products are merged54

in a least squares framework that relies on the error estimates of the products obtained55
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from triple collocation. Specifically, we merge thermal remote sensing based soil moisture56

proxy retrievals from the Atmosphere Land Exchange Inversion [ALEXI; Anderson et al.,57

2007a] energy balance model, the Noah [Ek et al., 2003] land surface model (LSM) soil58

moisture simulations, and Land Parameter Retrieval Model [LPRM; Owe et al., 2008] soil59

moisture estimates based on microwave remote sensing observations. The least squares60

framework is also able to provide estimates of uncertainty in the merged product. The61

methodology proposed here can potentially add value to the soil moisture products derived62

from the current and future soil moisture satellite missions (i.e, SMOS: Soil Moisture and63

Ocean Salinity; SMAP, Soil Moisture Active Passive) by optimally merging them with64

independent soil moisture estimates acquired from infrared observations and land surface65

models.66

The general least squares solution is briefly reviewed in the next section. Section 367

reviews the triple collocation equations, section 4 introduces the input data, section 568

presents the results, and section 6 summarizes our conclusions.69

2. Least Squares Merging

Least squares is an estimation theory that has been used in numerous studies since70

its initial applications by Gauss [1963] and Legendre [1806]. The theory has gained its71

current form by Kalman [1960] [Sorenson, 1970] and can be used to describe the basis72

of most modern data assimilation techniques [Talagrand, 1997]. We use least squares to73

optimally merge multiple independent products with known uncertainty estimates. The74

least squares solution has been derived in many studies; here we briefly review it to provide75

background for our proposed merging algorithm.76
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Assuming we have three independent realizations (Sx, Sy, and Sz) of a variable along77

with their respective zero-mean errors (εx, εy, and εz) and error variances (σ2
x, σ

2
y, and78

σ2
z). These realizations can be represented by79

Sx = αSt + εx (1)80

Sy = αSt + εy (2)81

Sz = αSt + εz (3)82
83

where St is the true value of the variable and α is a measure of the relation between84

these realizations and the assumed truth. Although in some cases α = 1, this is not a85

requirement; the least squares solution can be obtained as long as all realizations relate86

to the truth with the same coefficient. The desired merged estimate, Sm, is obtained as87

Sm = wxSx + wySy + wzSz (4)88
89

where wx, wy, and wz are the relative weights of Sx, Sy, and Sz respectively. To have an90

unbiased merged estimate (E[Sm−αSt] = 0), it is required that wx +wy +wz = 1. Given91

these constraints, the ultimate goal is to derive these weights as functions of the error92

variance of the three realizations and to find the error variance estimate of the merged93

product. The error estimate of the merged product is obtained as εm = Sm−αSt and the94

solution we seek minimizes a selected cost function (J) in a mean squares sense. Here, we95

select this cost function to be the error variance of the merged estimate:96

J = σ2
m = wxσ

2
x + wyσ

2
y + wzσ

2
z (5)97

J = σ2
m = wxσ

2
x + (1 − wx − wz)σ

2
y + wzσ

2
z . (6)98

99
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Setting ∂J/∂wz = 0 and ∂J/∂wx = 0 in eq. 6 and solving for wx, wy, and wz, we obtain100

wx =
σ2
yσ

2
z

σ2
xσ

2
y + σ2

xσ
2
z + σ2

yσ
2
z

(7)101

wy =
σ2
xσ

2
z

σ2
xσ

2
y + σ2

xσ
2
z + σ2

yσ
2
z

(8)102

wz =
σ2
xσ

2
y

σ2
xσ

2
y + σ2

xσ
2
z + σ2

yσ
2
z

. (9)103

104

The solution is intuitive since the weights are proportional to the uncertainty of the other105

two estimates. If two realizations are available instead of three, then the least squares106

solution can be applied similarly with a cost function selection of107

J = σ2
m = wxσ

2
x + (1 − wx)σ

2
y (10)108

109

where the weights are obtained as110

wx =
σ2
y

σ2
x + σ2

y

(11)111

wy =
σ2
x

σ2
x + σ2

y

. (12)112

113

The merged product at any given time can therefore be based on anywhere between one114

and three realization(s). Hence, the uncertainty of the merged product at any given115

location may not be constant in time. Accordingly, for each available merged product,116

its uncertainty is also given as a separate product. The alternative is to use only the117

mutually available data to preserve the uncertainty estimate of the merged product in118

time. However, in this latter scenario, temporal and spatial gaps of the merged product119

would be larger and the merged product would have higher uncertainty.120

3. Error Estimation Using Triple Collocation

For a given set of realizations, optimal merging based on least squares technique de-121

scribed here requires an estimate of the relative uncertainties of input products. In this122
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study, the error variances of these estimates are obtained using triple collocation. Triple123

collocation is an attractive methodology that estimates the relative errors of different124

products regardless of their observation platform. Triple collocation solutions were first125

introduced in oceanic applications by Stoffelen [1998] and Caires and Sterl [2003], and126

later applied in many hydrological studies [Parinussa et al., 2011b; Loew and Schlenz,127

2011]. From now on, we use the abbreviations ST1998 and CS2003 to refer to the triple128

collocation solutions introduced by Stoffelen [1998] and by Caires and Sterl [2003] respec-129

tively. The ST1998 is flexible enough to accommodate representation errors (i.e. point vs130

grid data), whereas this component is neglected in CS2003. On the other hand, CS2003131

accommodates correlated errors between realizations, whereas error cross-correlations are132

required to be zero in the solution of ST1998. Moreover, ST1998 explicitly requires a133

rescaling step to enforce datasets to have the same relationship with the truth. CS2003134

does not require this rescaling, and as a result the error variance estimates obtained before135

and after a potential rescaling (if applied) differ. If this rescaling step is applied, both136

CS2003 and ST1998 yield identical error variance estimates under same assumptions.137

Given that the ultimate goal of this study is to merge different estimates, it is necessary138

to rescale them to obtain a set of realizations that has consistent relationship with the139

assumed truth, similar to eq. 1–3. Hence, we adopt ST1998 in this study:140

S1 = α1St + e1 (13)141

S2 = α2St + e2 (14)142

S3 = α3St + e3 (15)143
144

where St is the true soil moisture anomaly with variance σ2
t ; S1, S2, and S3 are three soil145

moisture anomalies related to truth with α1, α2, and α3 coefficients, with errors e1, e2,146
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and e3, and with error variances σ2
1, σ2

2, and σ2
3 respectively. Here σ2

t does not imply the147

truth has errors, but rather it is the true soil moisture variance in time. We rescale these148

realizations using:149

S∗
1 = αSt + e∗1 (16)150

S∗
2 = αSt + e∗2 (17)151

S∗
3 = αSt + e∗3 (18)152

153

where S∗
1 , S∗

2 , and S∗
3 are the rescaled realizations and e∗1, e

∗
2, and e∗3 are the relative154

errors of the realizations with variances σ∗2
1, σ

∗2
2, and σ∗2

3. Rescaled values are related to155

the initial estimates as S∗
1 = S1c1, S

∗
2 = S2c2, and S∗

3 = S3c3, where c1, c2, and c3 are156

the rescaling factors. By arbitrarily selecting any of the datasets as a reference (in this157

study assuming α = α1) and assuming the representativeness errors that are described by158

Stoffelen [1998] are zero, the rescaling factors can be found as,159

c1 = 1 (19)160

c2 =
S∗
1S

∗
3

S∗
2S

∗
3

(20)161

c3 =
S∗
1S

∗
2

S∗
3S

∗
2

. (21)162

163

Error variance estimates (σ2
1, σ2

2, or σ2
3) for the original non-scaled datasets (S1, S2, and164

S3) using CS2003 can be converted into the error variance (σ∗2
1, σ

∗2
2, or σ∗2

3) of the scaled165

estimates (S∗
1 , S∗

2 , and S∗
3) using the same rescaling factors given in (19–21). However, it is166

emphasized that applying ST1998 without the rescaling step does not necessarily give the167

error variances of the non-scaled datasets as opposed to applying CS2003. Additionally,168

the climatologies are removed with the standardization process so that datasets have zero169

mean (consistent with ST1998 and CS2003) and unity standard deviation. Consequently,170
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the TC analysis is performed solely on soil moisture anomalies and is not impacted by the171

likely presence of bias in one or more of the datasets. Here the accuracy of the rescaling to172

match the relations of the datasets with the truth is tied to the linear relation between the173

products in the form given in (1-3). When compared to more nonlinear systems, highly174

linear systems are expected to have smaller sampling errors and require fewer observations175

to obtain same level of accuracy. Also, note that this rescaling step can be performed176

independently for each area or time period of interest, hence it may vary spatially or177

temporally.178

In the triple collocation system of equations presented above, there are current seven179

unknowns (α1, α2, α3, σ
2
t ,σ

2
1, σ2

2, and σ2
3) constrained by three equations (16–18). By180

selecting a reference dataset (i.e. assuming α = α1) and rescaling other datasets to this181

reference, our goal becomes seeking a solution for four unknowns (α2σ2
t , σ

∗2
1, σ

∗2
2, and182

σ∗2
3), rather than seven. This system, with four unknowns and three equations, is still183

under-determined. We are able to solve for these four unknowns only after assuming all184

error related cross-covariances are zero.185

However, in the absence of any other independent information, we cannot decompose186

the α2σ2
t estimate into estimates of α2 and σ2

t ; meaning we can never know the true187

σ2
t . Different reference dataset selections result in different α2σ2

t as well as different σ∗2
1,188

σ∗2
2, and σ∗2

3. Therefore the triple collocation equations described above provide only189

the relative accuracy of these realizations (how the noisiness of one product compares190

against other product) whereas the absolute values of the error variances themselves are191

dependent on the reference dataset selection. While triple collocation is not ideal for192

capturing absolute errors, its representation of relative errors between input products is193
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independent of the arbitrary choice of a single dataset as a scaling reference. Fortunately,194

this type of relative information - and not absolute errors - is all that is required in order195

to determine optimal least-squares averaging.196

Assuming the errors of these products are independent from each other and from the197

truth, and assuming a mutual linear relationship between these estimates and the true198

soil moisture, the final error variances of the rescaled realizations (that are used in the199

above described least squares solution) are found as:200

σ∗2
1 = (S∗

1 − S∗
2)(S∗

1 − S∗
3) (22)201

σ∗2
2 = (S∗

2 − S∗
1)(S∗

2 − S∗
3) (23)202

σ∗2
3 = (S∗

3 − S∗
1)(S∗

3 − S∗
2). (24)203

204

Note that the triple collocation error variances, which are assumed constant in time, are205

estimated using the entire time series only when at least 100 separate retrievals/estimates206

are mutually available for each of the 3 input soil moisture products. If this threshold207

is not met, then all error variance estimates are assumed equal (i.e., triple collocation is208

not calculated). Once these error variance estimates are obtained, weights are calculated209

at each time step independently using these error variances in a least squares framework.210

While the obtained error variance estimates are constant in time, the weights are not.211

When all three realizations are available, the least squares solution for three datasets212

(eq. 7–9) is used; when two out of three realizations are available then the least squares213

solution for two datasets (eq. 11–12) is used.214

Accordingly, the error variance of the merged product at each time step is calculated215

using eq. 6 or eq. 10, depending on the number of available realizations at any given time.216

When only one realization is available, this single product is used as the final merged217
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product and its error variance is used as the error variance of the merged product. If all218

realizations would have had the identical temporal coverage (all available or all missing219

simultaneously), then the weights would have been constant in time. They change in time220

only due to the availability of the products at any given time step. Then the datasets221

are merged using these calculated weights for each time step separately. If there are not222

enough mutually available products, meaning a triple collocation based estimate is not223

available, then products are merged using equal weights.224

4. Data

4.1. Input Datasets

The study area is selected as the continental United States, between 125◦-67◦W and 25◦-225

50◦N. Daily datasets are obtained for each year from 2002 to 2010 for the months of April226

through October. Large-scale soil moisture information is currently available from three227

independent sources: retrievals derived from thermal-infrared remote sensing, retrievals228

derived from microwave remote sensing, and estimates derived from water balance models229

forced with micro-meteorological observations. Here, all three sources of soil moisture data230

are used as input into the triple collocation analysis. In particular, this study utilizes an231

ALEXI energy balance model soil moisture proxy obtained from thermal infrared remotely232

sensed images, LPRM soil moisture estimates that are obtained from passive microwave233

remote sensing images, and Noah land surface model soil moisture simulations. The234

methodology is applied at a grid space of 0.25◦; datasets at higher native resolution have235

been aggregated to this common grid. All datasets are averaged to weekly composites236

from their native temporal resolution.237
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ALEXI is a two-source (soil and vegetation) model that solves for the latent heat and238

the sensible heat components of the surface energy balance by taking advantage of mea-239

surements of morning land-surface temperature rise obtained by geostationary satellites240

reducing sensitivity to absolute biases in retrieved temperature [Mecikalski et al., 1999;241

Anderson et al., 2007a]. Using the obtained fluxes, a strong relationship was found be-242

tween the ratio of actual to potential evapotranspiration fluxes (also named as fraction243

of potential evapotranspiration; fPET ) and the fraction of available water (faw) in the244

soil column [Anderson et al., 2007a, b, 2011]. Following this study, Hain et al. [2009]245

proposed unique relationships between fPET and faw, evaluated this relation using soil246

moisture observations from the Oklahoma Mesonet Network, and showed ALEXI has247

valuable information about faw which serves as a proxy for the root-zone soil moisture in248

the vegetated areas. Here we utilize ALEXI-based fPET retrievals following the approach249

described by Hain et al. [2011]. Note that ALEXI fPET represents a surface–root-zone250

merged soil moisture estimate; yielding a proxy estimate of water availability for evapo-251

transpiration (i.e. water in the surface layer for bare soil evaporation, and water in the252

root-zone for canopy transpiration). ALEXI fPET values have been aggregated from 10km253

to 0.25◦ resolution. Given its reliance on the thermal remote sensing based observations,254

current ALEXI retrievals are limited to clear-sky conditions, which is a major limitation255

to data availability particularly over the Northern US. To fill the entire grid, it is nec-256

essary to average daily fPET fields over time to create time composites. More detailed257

information about ALEXI based soil moisture proxy can be found in above mentioned258

studies.259
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Noah (version 2.7) LSM data were obtained from the global simulations gener-260

ated using Global Land Data Assimilation System [GLDAS; Rodell et al., 2004] forc-261

ing data. The Noah model calculates a coupled surface water and energy bal-262

ance and thus calculates multi-layer soil moisture as the storage component of a263

soil water balance. More details about these Noah simulations can be found at264

http://disc.sci.gsfc.nasa.gov/hydrology/documentation. These hourly simulations were265

performed at 0.25◦ spatial resolution, hence spatial aggregation was not needed. Since266

the ALEXI soil moisture proxy has mixed vertical support over sparsely and densely267

vegetated surfaces, a Noah soil moisture estimate is computed that mimics this vertical268

support. The second-layer (10-40cm depth) and the third-layer (40-100cm depth) soil269

moisture simulations are averaged into a root-zone soil moisture estimate (Noahroot) by270

weighting each layer volumetric soil moisture proportional to respective soil layer depths.271

This root-zone product and the surface (0-10cm) soil moisture simulations (Noahsrfc) are272

later combined into an adjusted soil moisture estimate (Noahadj) following the study of273

Hain et al. [2011]:274

Noahadj = (1 − fvc)Noahsrfc + fvcNoahroot (25)275
276

where fvc is the fractional vegetation cover based on remote sensing based observa-277

tions of leaf area index acquired by the Moderate Resolution Imaging Spectroradiometer278

(MODIS). As a result of eq. 25, Noahadj estimates are essentially surface soil moisture279

estimates over areas with no vegetation cover, and are root-zone soil moisture estimates280

over areas with dense vegetation cover.281

Advanced Microwave Scanning Radiometer EOS (AMSR-E) microwave remote sensing282

based brightness temperature observations have been used in numerous passive microwave-283
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based algorithms [Jackson, 1993; Owe et al., 2001; Njoku and Chan, 2006; Lu et al., 2009],284

and the resulting soil moisture products have been extensively validated under a wide285

range of ground conditions and climate regimes [Draper et al., 2009; Mladenova et al.,286

2011; Parinussa et al., 2011a]. Among these products, LPRM soil moisture estimates have287

been used in this study [Owe et al., 2008], obtained from Vrije University Amsterdam288

(VUA). LPRM soil moisture estimates are obtained using one layer radiative transfer-289

based land parameter retrieval model. This retrieval model uses soil related information290

as ancillary data, and solves simultaneously for soil moisture, vegetation optical depth, and291

soil skin temperature. The model uses the relationship between Microwave Polarization292

Difference Index, vegetation optical depth, and soil dielectric constant and solves for the293

skin temperature using a regression-based model based on Ka-band vertical polarization294

AMSR-E brightness temperature data [Holmes et al., 2009]. Soil moisture retrievals are295

based on C-band descending AMSR-E brightness temperature observations. However,296

X-band observations are also used in areas of the world where C-band observations are297

affected by radio frequency interference. The LPRM soil moisture estimates refer to the298

top 3cm of the soil profile. AMSR-E-based brightness temperature (Tb) observations are299

obtained at native spatial resolutions of 56km and 38km for C- and X-band, respectively.300

The operational LPRM product has been re-gridded to 0.25◦ spatial resolution are re-301

gridded values by taking advantage of the multiple samples within the same footprint.302

Here the three parent datasets are obtained from different algorithms driven by different303

input data, supporting the assumption of the independence of the errors for the triple304

collocation methodology. On the other hand, these products may have different skills in305

predicting the truth that we define. However, here it is stressed that as long as highly306
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linear relationships exist between the products, the dataset selection does not present any307

problem in a triple collocation based framework regardless of the differences in the dataset308

retrieval algorithms. This issue will be revisited in the results section to provide more309

elaborate discussions.310

In terms of timing, ALEXI provides a direct estimate of the soil moisture conditions at311

shortly before the local noon on days with clear morning conditions. LPRM soil moisture312

retrievals are obtained using microwave remote sensing based observations collected at313

1.30am UTC. On the other hand, Noah SM estimates are temporally continuous, and314

output at hourly time-steps. Accordingly, there could be minor inconsistencies between315

the temporal representativeness of these products. However, the impact of these inconsis-316

tencies should be minimized during the temporal averaging to obtain weekly composites.317

Given orbit patterns and typical frequency of mask retrievals, ALEXI and LPRM weekly318

composites are obtained by averaging around 2-4 daily retrievals whereas Noah weekly319

composites are obtained by averaging 24*7=168 hourly simulations. Hence, Noah has320

better “weekly” temporal support than do the other products. However, it should be321

noted that poor support is simply one component of the total random error detected by322

triple collocation and therefore poses no particular challenge for our proposed merging323

strategy.324

4.2. Validation Datasets

The merged product has been evaluated in comparison with in situ soil moisture observa-325

tions from the Oklahoma MESONET Network [Brock et al., 1995; Basara and Crawford,326

2000] and the Soil Climate Analysis Network [SCAN, Schaefer et al., 2007] within the327

Contiguous United States (CONUS). In Oklahoma an integrated network of 135 meteo-328
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rological stations has been installed during the past two decades. Among these stations,329

around 100 have calibrated soil moisture monitoring devices taking measurements at 5cm,330

25cm, 60cm, and 75cm depths. Collected data undergo automated and manual quality331

controls conducted by University of Oklahoma during the conversion of 30min raw data332

into daily soil moisture averages [Illston et al., 2008]. There are over 150 SCAN stations333

spread throughout the CONUS taking soil moisture measurements at 5cm, 10cm, 20cm,334

50cm, and 100cm depths [Schaefer et al., 2007].335

In a manner analogous to eq. 25, a vegetation correction has been applied to the station336

measurements to ensure consistent soil moisture estimates between the merged products337

and the validation datasets. More specifically, the 1st layer (top 5cm) MESONET data338

have been taken as surface soil moisture and a weighted average of the 2nd to the 4th339

layers as a root zone; the MODIS-based vegetation cover fraction information at 0.25340

degree grid is assumed to be a representative value for the station location, where the341

vegetation correction is carried out using eq. 25. Similarly a vegetation correction was342

also applied to SCAN soil moisture values; the 1st layer soil moisture values are used343

as surface values and average soil moisture values of the 2nd to the 5th layers, weighted344

by their depths, are used as root zone values. The merged soil moisture estimates were345

validated using these vegetation-cover adjusted soil moisture observations. Because the346

MESONET and the SCAN station data are adjusted for vegetation cover fraction, the347

number of available station data points depends on the availability of both the surface and348

the root-zone observations. Since the root-zone observations are not as readily available as349

the surface observations, there are approximately only 50 MESONET and SCAN stations350

available for verification.351
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The skill of the triple collocation based weights was also evaluated by comparing the352

performance of merged estimate against the performance of a naively-merged product353

performance, which simply assumes equal weights for each available product.354

4.3. Data Standardization

Weekly composites are standardized, so that their time-mean (across years) is zero and355

time-variance is unity for a given pixel and week.356

µw,lon,lat =
nar∑
y

SMy,w,lon,lat/nar (26)357

σw,lon,lat = (
nar∑
y

(SMy,w,lon,lat − µw,lon,lat)
2/nar)1/2 (27)358

SMsy,w,lon,lat =
SMy,w,lon,lat − µw,lon,lat

σw,lon,lat
(28)359

360

where y, w, lon, and lat denote year, week, longitude, and latitude respectively; SM361

denotes one of the three soil moisture products used in this study (ALEXI, Noah, and362

LPRM); SMs is the standardized soil moisture realization; and nar is the number of363

available realizations out of 9 years for the given week, longitude, and latitude. The364

standardized SMs values defined above were used in the triple collocation based error365

estimations. Here the merging process could have been performed by adjusting for only the366

mean component of the products; however, standardization facilitates a more meaningful367

product comparison between the parent products and the merged product (with similar368

soil moisture magnitudes).369

4.4. Vertical Support

The output product produced by the merging methodology introduced above is a370

surface–root-zone merged soil moisture estimate representing a proxy estimate of water371
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available for evapotranspiration. The vertical support in each parent product, however,372

is different. ALEXI and Noah soil moisture represents a mixture of surface and root-zone373

moisture content, while the LPRM data reflect only surface (zero to 3-cm) soil moisture374

information and therefore has a different vertical support than Noah and ALEXI soil375

moisture products over vegetated areas. The effect of this inconsistency in vertical sup-376

port over vegetated areas is investigated further by applying additional triple collocation377

analyses to vegetation-adjusted LPRM values that are obtained using an exponential filter378

methodology parameterized by various characteristic length scales and by examining the379

Noah and Common Land Model (CLM; see below for the description of CLM) correlations380

between surface and vegetation-adjusted soil moisture values.381

Additional triple collocation analyses were performed using vegetation-adjusted LPRM382

values obtained using eq. 25. This equation uses the native LPRM surface and LPRM-383

based root-zone products obtained using the exponential smoothing methodology de-384

scribed by Wagner et al. [1999] and Albergel et al. [2008] to estimate root-zone soil mois-385

ture retrievals from superficial observations:386

LPRMroot(t) =

∑
i

LPRMsrfc(ti)e
−(t−ti)/τ

∑
i

e−(t−ti)/τ
(29)387

388

where ti ≤ t, LPRMsrfc is the surface LPRM soil moisture estimate at time ti, LPRMroot389

is the root-zone soil moisture estimate, and τ is the characteristic time length. Specifically390

three vegetation-adjusted LPRM products were estimated using three separate root-zone391

LPRM values obtained via assigning τ values of 4, 7, and 14 days. Accordingly, we have392

performed four parallel triple collocation analyses that use the same ALEXI and Noah393
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datasets but different LPRM-based soil moisture values (one LPRM-surface product and394

three vegetation-adjusted LPRM products).395

In this study we also use CLM (version 2.0) simulations, solely for the investigation of396

surface–vegetation-adjusted soil moisture values coupling and not in the triple collocation397

merging methodology (section 5 below). Like Noah, CLM is a soil-vegetation-atmosphere398

transfer model that solves for the water and the energy balance at the surface [Dai et al.,399

2003], and is driven here by GLDAS forcing data [Rodell et al., 2004]. CLM simulations400

have 1◦ spatial resolution and utilize 10 soil layers with 2, 3, 4, 8, 12, 20, 34, 55, 92, and401

113cm depths respectively. Vegetation-adjusted CLM soil moisture values were obtained402

(25) by using surface soil moisture estimates defined as the weighted average of the 1st to403

the 3rd layers (0-9cm) and using root-zone soil moisture estimates defined as the weighted404

average of the 4th to 7th layers (10-83cm).405

4.5. Additional Considerations

For cross-comparisons of the linear relation between parent products, cross-correlations406

were calculated without setting any threshold for the availability of the products. The407

resulting correlation values were then masked if a significant correlation was not found.408

For the triple collocation we have set a minimum number (100) of mutually available409

datasets. If 100 mutually available soil moisture values were not found, then the triple410

collocation analysis was not performed. In such cases, 0.33 weights are assigned for all411

three products. However, for the data merging on each individual date, the actual weights412

depend on the availability of the datasets for that particular day. For example for a pixel413

that has equal weights, if all three datasets are available for any given day, only then414
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equal weights are used; if only two of the products are available at any given day, then415

the applied weights would be recalculated to 0.50 and 0.50.416

Triple collocation based error estimates are also dependent on the availability of the417

daily products, which influences the uncertainty of the sampled weekly composites. The418

more frequently a dataset is available, the less noisy its weekly composite become. On419

average ALEXI has 2.1 and LPRM has 3.1 available observations per week over the420

CONUS, whereas Noah weekly estimates are based on 168 separate hourly Noah soil421

moisture predictions generated each week (i.e., 24 estimates/day times 7 days). Although422

it is possible to combine both the ascending and the descending AMSR-E based LPRM423

soil moisture estimates to increase the number of mutually available observations, this has424

not been done in this study. Here, it should be noted that the merged weekly composite425

is derived from the weighted averaging of either one, two or three individual soil moisture426

products. Hence, the uncertainty of the final merged estimate at any week also depends427

on the availability of the products. Dates with more missing soil moisture values have428

higher uncertainty compared to dates with less missing values.429

5. Results

5.1. Correlations and Weights

ALEXI, Noah, and LPRM based soil moisture anomaly estimates were used to calculate430

the error variances of each product in a triple collocation framework. As triple collocation431

based error estimates require a mutual linear relationship between products, we have432

evaluated the linearity between the three products by analyzing their cross-correlations433

(Fig. 1). Significant correlations between LPRM and ALEXI, and between LPRM and434

Noah over large parts of the eastern CONUS are not found, which is partly due to the435
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non-availability of LPRM soil moisture estimates caused by the strong attenuation of436

the microwave signal over densely vegetated areas. On the other hand, there are strong437

cross-correlations over areas of the southern and the northern CONUS (i.e. from Texas438

to Montana), indicating a strong mutual linear relationship between various soil moisture439

products.440

The triple collocation based errors were computed using eq. 22–24 and were used in441

the least squares framework to obtain weights using eq. 7–9. In general, the differences442

between triple collocation analyses that use different LPRM products (corresponding to443

various amounts of temporal smoothing via eq. 29) are minimal (Fig. 2), suggesting the444

nonlinearities due to vertical support differences do not have a major impact on estimated445

weights, even though the use of longer exponential filter correlation lengths favor ALEXI446

more than Noah and LPRM with respect to the difference between the top and the447

bottom rows in Fig. 2. The resulting weights shown in Fig. 2 are intuitively consistent448

with the cross-correlations of the products (Fig. 1); the product that has the highest449

cross-correlation with its pairs also has the largest estimated weights. For example, the450

correlations between Noah and ALEXI and between Noah and LPRM are higher than the451

correlation between ALEXI and LPRM over the south-eastern CONUS; therefore, Noah452

weighting is relatively higher than both ALEXI and LPRM over this area (top row in Fig.453

2). Similarly, the correlations between LPRM and ALEXI and between LPRM and Noah454

are higher than the correlation between ALEXI and Noah over the northern CONUS;455

therefore, the optimal weighting applied to LPRM retrievals is higher than ALEXI and456

Noah over this area. In general, ALEXI performs better over the southern CONUS than457
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the northern, which can be attributed to the lower temporal coverage of ALEXI over the458

northern CONUS due to clouds [Hain et al., 2011].459

This study focuses on the warm season to avoid issues related to snow cover and frozen460

soils, although it is possible to perform the analysis using both the warm and the cold461

season data. In general we may expect remote sensing based soil moisture estimates462

retrieved during winter to have higher sampling errors due to larger data gaps (both tem-463

porally and spatially) partly caused by snow and ice conditions than estimates retrieved464

during summer. Hence, a single set of weights for the entire year may not reflect the error465

characteristics as well as seasonally derived weights. The estimation of seasonal weights,466

however, would require longer time series and may be feasible with ongoing efforts to467

extend the length of the remote sensing-based databases.468

5.2. Merged Estimate and Station Data

All subsequent merging results are based on the case of no LPRM smoothing (i.e., the469

top row in Fig. 2). For the merging methodology, the weights in Fig. 2 are used only470

when all three the datasets are available; for missing days, weights were calculated using471

the error estimates of the available days. Parent products (ALEXI, Noah, and LPRM),472

the merged estimate (merged realization using least squares) and the uncertainty of the473

merged estimate for the 19th week (7-13th of May) of 2007 are shown in Fig. 3. In this474

particular week, the standard deviation of the error estimate is around 0.40 (unitless as all475

products are standardized), and the soil moisture anomalies range between -2.6 to +2.7476

standard deviations around the climatology of the given local pixel.477

Time series of the parent products and the merged estimate are shown together with478

data from two individual MESONET and SCAN stations in Fig. 4. The weights of the479
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parent products are similar at these station points; hence, the merged estimates fall be-480

tween three parent products without closely following any one in particular. Average481

station data correlations with the parent products and the merged estimate are sum-482

marized in Table 1; the significance of these correlations, the correlation comparisons of483

parent products, and the merged estimate are given in Table 2. On average, parent prod-484

ucts are better correlated with the MESONET data than the SCAN data (upper sections485

of Table 1). The number of stations that have significant correlations with the parent486

products and the merged estimate are higher for the MESONET data than the SCAN487

data (upper sections of Table 2). The merged estimates are better correlated with the488

station data than the individual parent products (middle sections of Table 1), particularly489

better than both ALEXI and LPRM (middle sections of Table 2), implying the merged490

product is more accurate than its parents products individually. Although on average491

the merged estimate has better correlation with the MESONET (but not SCAN) than492

the best correlation of the parent products, the improvement is not significant for the493

majority of the stations (lower sections of Table 2).494

5.3. Implications of Naive Merging

Although application of the merging scheme leads to an integrated product that was gen-495

erally better than any of its three parent products in isolation, the triple-collocation based496

merge estimate did not generally lead to an integrated product that was demonstrably497

superior to naive aggregation (i.e., aggregation with equal weighting) (Table 2). Potential498

reasons for the lack of significant improvement against the parent and the naively merged499

products include: 1) station data are point data and may have high representativeness500

errors [Ryu and Famiglietti, 2005; Miralles et al., 2010; Cosh et al., 2006], and/or 2) triple501
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collocation based errors may not be optimum due to inadequate mutually available data502

(limited temporal extent of parent products), and/or 3) the weights are optimum, but503

the parent products may have similar skills and therefore merging them in a naive way504

produces estimates that are only marginally different from the optimally merged estimates505

obtained via triple collocation.506

In particular the station observations are point data, thus very susceptible to represen-507

tativeness errors and the weights obtained through triple collocation are very sensitive508

to the length of the mutually available data. It is our experience that the number of509

mutually available triplets in this study may not be sufficient for highly accurate triple510

collocation estimates on weekly or monthly time-scales. However, as longer time-series511

become available through remote sensing techniques and modeling, and as improved bet-512

ter station data (with less representativeness errors via better selection of station and/or513

sensor locations) are collected, it is expected that the merged estimates will result in514

higher improvements over the parent products.515

The difference between the optimal solution and the naive method was also evaluated516

by investigating the sensitivity of the optimal solution to data availability and averaging.517

Specifically, the triple collocation based weights and the cross-correlations for various518

averaging windows-lengths were calculated (Table 3) to evaluate the sensitivity of derived519

optimal weights to aggregation period and retrieval availability. To do this, the daily520

data were averaged into either weekly or monthly composites, and using all the available521

daily data for averaging (i.e. the “all available scenario”) or using only the days when522

all three products are available (i.e. the “mutually available scenario”). Applying the523

mutually available scenario guarantees that equal numbers of daily products are used in524
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weekly or monthly composites analyzed via triple collocation. In general, the differences in525

weights were higher than the differences between cross-correlations for weekly all available526

scenario and the weight differences were much less for the weekly mutual scenario and for527

both monthly scenarios (Table 3). This implies that the weighting favors products with528

higher temporal availability (=model) for weekly scenarios, but the effect of this retrieval529

frequency is reduced when datasets are averaged for longer time periods. This reduced530

difference in weights and correlation can explain the similarity between the performance531

of merged products based on triple collocation and naive weighting. The skills of the532

parent products are very similar; therefore, the naive averaging approach simply follows533

the optimal solution obtained via triple collocation.534

5.4. Vertical Support

As discussed above, the final merged soil moisture estimate is a mixed product that535

reflects the soil moisture layer that is actively interacting with the atmosphere via evap-536

otranspiration. Hence, using the surface-only microwave remote sensing product over537

sparsely vegetated areas is consistent with the properties of the mixed product. However,538

over densely vegetated areas this mixed vertical support is inconsistent with microwave-539

based soil moisture retrievals, which are strictly limited to the near-surface layer (surface540

to 3cm). Consequently, over densely vegetated areas there is a potential inconsistency541

in the vertical support of LPRM soil moisture retrievals relative to ALEXI and Noah542

products (see above). A series of analyses has been performed to test the effect of us-543

ing surface-only microwave remote sensing product on our triple collocation results over544

vegetated areas.545
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Since the parameter of interest is the vegetation-adjusted soil moisture value (rather546

than root-zone soil moisture), we have narrowed our focus to this parameter. High corre-547

lations at weekly time scales over densely vegetated areas imply a strong linear relation548

between the surface and the vegetation-adjusted soil moisture simulations; similar to the549

triple collocation equations (eq. 16-18) where we assume a linear relation between each550

dataset and the truth. Therefore the applicability of these equations to soil moisture551

products obtained at different vertical depths is determined by the linearity of the rela-552

tionship between surface and vegetation-adjusted soil moisture. The depth variations pose553

a problem to our approach only if they manifest themselves in a nonlinear or a hysteric554

relationship between products. Conversely, if the relationship is linear, it simply folds into555

the linear rescaling step which underlies the application of triple collocation. Therefore556

the impact of vertical consistency (between LPRM and Noah/ALEXI-based soil moisture557

products) will hinge on the degree to which soil moisture estimates at various depths can558

be linearly related.559

Correlations were computed between the surface and vegetation-adjusted soil moisture560

values from both Noah and CLM LSMs (Fig. 5) and both MESONET and SCAN station561

data (Table 4). Very high correlations (i.e., linear relationships) were found between the562

surface and the vegetation-adjusted station-based soil moisture data from station-based563

analysis (in Table 4, 0.91 for both MESONET and SCAN data) and from model simula-564

tions (in Table 4, 0.96 and 0.92 correlations for Noah and CLM respectively). Depending565

on these very strong linear relations between the surface and the vegetation-adjusted soil566

moisture values, we can tell with high confidence that -at weekly time scales- vertical567

inconsistencies in support can be effectively resolved via linear rescaling.568
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Another way to test the potential impact of surface-only LPRM data products is to569

mimic LSM transformations into integrated surface–root-zone products using a low-pass570

filter. Only marginal differences were detected between the weights obtained by using571

weekly surface and surface–root-zone mixed LPRM products (Fig. 2). Hence, overall572

these analyses suggest that differences in vertical support do not impact the analysis in a573

significant way.574

6. Discussions and Conclusions

Model error covariance estimates in many hydrological data assimilation applications575

are obtained through perturbation of forcings and states without any rigorous justification576

of the magnitude of these perturbations [Reichle et al., 2008; Crow and van den Berg, 2010]577

even though the ensemble spread tends to be a stronger function of forcing spread than578

initial condition spread [Yilmaz et al., 2012]. Accordingly, this results in a merging scheme579

that is highly dependent on the user to accurately characterize modeling and observations580

errors which, in turn, determine the relative weight applied to model background and581

observations at update times.582

In this study we have introduced a methodology that is completely objective and does583

not assume any arbitrary assumptions concerning the error characteristics of its input584

datasets. Specifically, error variances of three independently estimated soil moisture585

datasets were obtained using a triple collocation method and different soil moisture prod-586

ucts were merged in an ordinary least squares framework. With the completely objective587

analysis introduced here, we are also able to estimate the uncertainty of the merged soil588

moisture as a separate product, which could be particularly useful for applications which589

require information about the reliability of the product.590
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The disadvantage of this framework when compared to traditional data assimilation591

techniques is that the estimated model errors are assumed to be stationary where in reality592

they could have time and/or flow dependency, and corrective information obtained via the593

merger is not temporally propagated forward in time (as in sequential filtering). Here it is594

stressed that we are not trying to replace the Kalman Filter based land data assimilation595

methodologies as they are more powerful than least squares merging through the ability596

of constraining all the model state and parameters with an adaptive error estimation597

framework. However, the least squares merging introduced here is more objective than598

many current land data assimilation applications in that it does not require any ad-599

hoc error estimates (i.e. forcing perturbations to create ensembles, observation error600

covariances).601

There are three necessary assumptions in this methodology: the independence of errors,602

availability of long-enough time-series, and mutual linearity of products. The first assump-603

tion can be justified for many geophysical variables (i.e. soil moisture, soil temperature,604

potential evaporation, etc) as there are numerous independent satellite- and model-based605

estimates. However, currently there are no benchmarks or criteria established for the sec-606

ond assumption. Experience from synthetic simulations (results not shown) shows that the607

length of the available datasets used in this study may not be long enough to obtain highly608

accurate error estimates using triple collocation on weekly or monthly time-scales. On609

the other hand, Noah and LPRM [Owe et al., 2008] estimates for longer than two decades610

are already available (although they are not used in this study) and currently there are611

existing efforts to produce ALEXI estimates for similar time-periods. Additionally the612

availability of longer time-series will also enable estimating separate sets of weights for613
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seasonal or sub-seasonal time-scales to partly address the issue of non-stationary weight-614

ing of products. The third assumption can be easily checked and the linearity can be615

justified via simple correlation calculations, as it is done in this study.616

In this study we have applied a triple collocation-based merging strategy to integrate soil617

moisture information acquired from microwave remote sensing, thermal remote sensing618

and land surface modeling. The approach also provides the ability to estimate uncertain-619

ties associated with the merger estimate. When compared to ground-based soil moisture620

observations, our merged product improves upon the accuracy of its three parent prod-621

ucts but fails to enhance merged products obtained using naive equal weighting. Given622

the small differences found between cross-correlations and weights, the lack of difference623

between our results and much naive weighting appears attributable to the marginal skill624

differences that exist between ALEXI, Noah, and LPRM based soil moisture estimates625

over the CONUS. We expect the differences between the skills of triple collocation- and626

naive method-based merged products would be higher over study areas where the differ-627

ences between the skills of the parent products are higher.628
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Figure 1. Cross-correlations (r2) between weekly ALEXI, Noah, and LPRM composites during

2002-2010 using months April through October.

D R A F T March 30, 2012, 5:51pm D R A F T



X - 38 YILMAZ ET AL.: OBJECTIVELY MERGING SM

−120 −110 −100 −90 −80 −70

25
30

35
40

45

ALEXI

−120 −110 −100 −90 −80 −70

25
30

35
40

45

NOAH

−120 −110 −100 −90 −80 −70

25
30

35
40

45

LPRM−Srfc

−120 −110 −100 −90 −80 −70

25
30

35
40

45

ALEXI

−120 −110 −100 −90 −80 −70

25
30

35
40

45

NOAH

−120 −110 −100 −90 −80 −70

25
30

35
40

45

LPRM−VegAdj−04

−120 −110 −100 −90 −80 −70

25
30

35
40

45

ALEXI

−120 −110 −100 −90 −80 −70

25
30

35
40

45

NOAH

−120 −110 −100 −90 −80 −70
25

30
35

40
45

LPRM−VegAdj−07

−120 −110 −100 −90 −80 −70

25
30

35
40

45

ALEXI

−120 −110 −100 −90 −80 −70

25
30

35
40

45

NOAH

−120 −110 −100 −90 −80 −70

25
30

35
40

45

LPRM−VegAdj−14

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 2. Weights of soil moisture estimates obtained from triple collocation. All four rows

used the same ALEXI and Noah products in the triple collocation analysis. The first row used

the native LPRM surface soil moisture product, whereas the second to fourth rows used also the

exponentially filtered LPRM-based root-zone soil moisture products with characteristic time-

lengths of 4, 7, and 14 days respectively. Here the areas over where triple collocation analyses

were not applied due to data unavailability were assigned 0.33 weight for all three products.
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Figure 3. Weekly composites of ALEXI, Noah, LPRM, merged soil moisture and its uncertainty

estimates for the 19th week of 2007. Soil moisture estimates are presented in terms of standard

normal deviates.
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Figure 4. Weekly soil moisture composite time series in terms of standard normal deviates.

Upper and lower panels correspond to time series at one of MESONET (Apache) and SCAN

(Crossroads) stations respectively. ALEXI, Noah, and LPRM values are obtained from the

closest available station.
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Figure 5. Weekly composite correlations between surface and vegetation-adjusted soil moisture

estimates of Noah and CLM over the CONUS.
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Table 1. Parent products (ALEXI, Noah, LPRM), merged estimate, and station data

(MESONET or SCAN) cross-correlations with the station data. Three layers of station soil

moisture data are considered: surface, vegetation-adjusted, and root-zone. NAIVE refers to the

merged product obtained by giving equal weight to each parent products.

MESONET SCAN
Surface Veg. Adj. Root Surface Veg. Cor. Root

ALEXI 0.46 0.48 0.38 0.36 0.38 0.34
Noah 0.54 0.54 0.33 0.41 0.42 0.33
LPRM 0.52 0.55 0.43 0.51 0.54 0.51
MERGED 0.61 0.63 0.46 0.55 0.58 0.51
NAIVE 0.61 0.64 0.46 0.55 0.57 0.50
MESONET or SCAN (Surface) 1.00 0.91 0.37 1.00 0.91 0.67
MESONET or SCAN (Veg. adj.) 0.91 1.00 0.60 0.91 1.00 0.78
MESONET or SCAN (Root) 0.37 0.60 1.00 0.67 0.78 1.00
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Table 2.

Results of product versus ground-data cross-correlation analysis for various scenarios. “Total”

refers to the number of ground-stations considered. Neg and Pos refer to statistically-significant

negative and positive results respectively for the scenarios given in the left column, and Non refers

to neither a positive result or a negative result. For the significance tests, a 95% confidence level

is used.
MESONET SCAN

Scenario Product Total Neg Non Pos Total Neg Non Pos
Correlations ALEXI 51 0 2 49 50 0 5 45
significantly Noah 51 0 1 50 50 0 4 46
different LPRM 50 0 1 49 44 0 7 37
than 0 MERGED 51 0 0 51 50 0 2 48
Merged estimate ALEXI 51 5 - 46 50 4 - 46
correlations better Noah 51 12 - 39 50 19 - 31
than individual products LPRM 50 4 - 46 44 7 - 37
(no significance test)
Naive estimate ALEXI 51 3 - 48 50 3 - 47
correlations better Noah 51 10 - 41 50 23 - 27
than individual products LPRM 50 7 - 43 44 10 - 34
(no significance test)
Merged best significantly ALL 51 0 50 1 50 0 50 0
Merged best ALL 51 0 19 32 50 0 29 21
Naive best significantly ALL 51 0 48 3 50 0 49 1
Naive best ALL 51 0 18 33 50 0 33 17
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Table 3. Mean weights and cross-correlations over the CONUS for different data compositing

strategies.

Weights
ALEXI Noah LPRM

Mutually available weekly 0.27 0.35 0.41
Mutually available monthly 0.34 0.32 0.37
All available weekly 0.25 0.41 0.37
All available monthly 0.32 0.37 0.35

Correlations
ALEXI-Noah ALEXI-LPRM Noah-LPRM

Mutually available weekly 0.38 0.40 0.43
Mutually available monthly 0.44 0.45 0.45
All Available weekly 0.40 0.38 0.44
All Available monthly 0.46 0.44 0.46
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Table 4. Noah, CLM, and station cross-correlations between surface and vegetation-adjusted

weekly soil moisture composite values at multiple locations. CONUS-East lays between 88◦-

75◦W, and 32◦-41◦N and CONUS-West lays between 116◦-103◦W and 29◦-36◦N.

Surface – Veg. Adj. MESONET Stations SCAN Stations CONUS CONUS-East CONUS-West
Noah 0.95 0.96 0.96 0.96 0.99
CLM 0.96 0.96 0.96 0.92 0.99
MESONET 0.91 - - - -
SCAN - 0.91 - - -
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